Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Hum Immunol ; 84(3): 163-171, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2179264

ABSTRACT

AIMS: The HLA system has been implicated as an underlying determinant for modulating the immune response to SARS-CoV-2. In this study, we aimed to determine the association of patients' HLA genetic profiles with the disease severity of COVID-19 infection. METHODS: Prospective study was conducted on COVID-19 patients (n = 40) admitted to hospitals in Saskatoon, Canada, between March and December 2020. Next-generation sequencing was performed on the patient samples to obtain high-resolution HLA typing profiles. The statistical association between HLA allelic frequency and disease severity was examined. The disease severity was categorized based on the length of hospital stay and intensive care needs or demise during the hospital stay. RESULTS: HLA allelic frequencies of the high and low-severity cohorts were normalized against corresponding background allelic frequencies. In the high-severity cohort, A*02:06 (11.8-fold), B*51:01 (2.4-fold), B*15:01(3.1-fold), C*01:02 (3.3-fold), DRB1*08:02 (31.2-fold), DQ*06:09 (11-fold), and DPB1*04:02(4-fold) were significantly overrepresented (p < 0.05) making these deleterious alleles. In the low-severity cohort, A*24:02 (2.8-fold), B*35:01 (2.8-fold), DRB1*04:07 (5.3-fold), and DRB1*08:11 (22-fold) were found to be significantly overrepresented (p < 0.05) making these protective alleles. These above alleles interact with NK cell antiviral activity via the killer immunoglobulin-like receptors (KIR). The high-severity cohort had a higher predilection for HLA alleles associated with KIR subgroups; Bw4-80I (1.1-fold), and C1 (1.6-fold) which promotes NK cell inhibition, while the low-severity cohort had a higher predilection for Bw4-80T (1.6-fold), and C2 (1.6-fold) which promote NK cell activation. CONCLUSION: In this study, the HLA allelic repository with the distribution of deleterious and protective alleles was found to correlate with the severity of the clinical course in COVID-19. Moreover, the interaction of specific HLA alleles with the KIR-associated subfamily modulates the NK cell-mediated surveillance of SARS-CoV-2. Both deleterious HLA alleles and inhibitory KIR appear prominently in the severe COVID-19 group focusing on the importance of NK cells in the convalescence of COVID-19.


Subject(s)
COVID-19 , HLA Antigens , Humans , HLA Antigens/genetics , Saskatchewan , Alleles , Prospective Studies , COVID-19/genetics , SARS-CoV-2/genetics , Receptors, KIR/genetics
2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: covidwho-2155127

ABSTRACT

Natural killer (NK) cells play a role in defence against viral infections by killing infected cells or by producing cytokines and interacting with adaptive immune cells. Killer immunoglobulin-like receptors (KIRs) regulate the activation of NK cells through their interaction with human leucocyte antigens (HLA). Ninety-six Sicilian patients positive to Human Immunodeficiency Virus-1 (HIV) and ninety-two Sicilian patients positive to SARS-CoV-2 were genotyped for KIRs and their HLA ligands. We also included fifty-six Sicilian patients with chronic hepatitis B (CHB) already recruited in our previous study. The aim of this study was to compare the distribution of KIR-HLA genes/groups of these three different infected populations with healthy Sicilian donors from the literature. We showed that the inhibitory KIR3DL1 gene and the KIR3DL1/HLA-B Bw4 pairing were more prevalent in individual CHB. At the same time, the frequency of HLA-C2 was increased in CHB compared to other groups. In contrast, the HLA-C1 ligand seems to have no contribution to CHB progression whereas it was significantly higher in COVID-19 and HIV-positive than healthy controls. These results suggest that specific KIR-HLA combinations can predict the outcome/susceptibility of these viral infections and allows to plan successful customized therapeutic strategies.


Subject(s)
COVID-19 , HIV Infections , HLA-B Antigens , Receptors, KIR , Humans , COVID-19/genetics , Genotype , HLA-B Antigens/genetics , Ligands , Receptors, KIR/genetics , SARS-CoV-2 , HIV Infections/genetics
3.
Biol Direct ; 17(1): 36, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139383

ABSTRACT

BACKGROUND: The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS: We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS: This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION: The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.


Subject(s)
COVID-19 , Humans , Animals , Major Histocompatibility Complex/genetics , Receptors, KIR/genetics , Macaca , Genomics
4.
Science ; 376(6590): eabi9591, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-2088383

ABSTRACT

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
5.
Trends Immunol ; 43(6): 415-416, 2022 06.
Article in English | MEDLINE | ID: covidwho-1864571

ABSTRACT

Mouse Ly49+CD8+ regulatory T cells (Tregs) can subdue autoreactive CD4+ T cells to suppress autoimmunity. Recently, Li et al. demonstrated that killer-cell immunoglobulin-like receptor (KIR)+CD8+ T cells are the human equivalent of Ly49+CD8+ regulatory T cells and kill pathogenic CD4+ T cells, which can be increased in certain human autoimmune diseases and viral infections.


Subject(s)
Autoimmune Diseases , Autoimmunity , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
6.
Science ; 375(6585): 1080, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1779303

ABSTRACT

Study finds human version of mouse immune regulators.


Subject(s)
Autoimmune Diseases/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Humans , Mice , Receptors, KIR/analysis
7.
Viruses ; 14(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1715736

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) infection induces elevated levels of inflammatory cytokines, which are mainly produced by the innate response to the virus. The role of NK cells, which are potent producers of IFN-γ and cytotoxicity, has not been sufficiently studied in the setting of SARS-CoV-2 infection. We confirmed a different distribution of NK cell subsets in hospitalized COVID-19 patients despite their NK cell deficiency. The impairment of this innate defense is mainly focused on the cytotoxic capacity of the CD56dim NK cells. On the one hand, we found an expansion of the CD56dimCD16neg NK subset, lower cytotoxic capacities, and high frequencies of inhibitory 2DL1 and 2DL1/S1 KIR receptors in COVID-19 patients. On the other hand, the depletion of CD56dimCD16dim/bright NK cell subsets, high cytotoxic capacities, and high frequencies of inhibitory 2DL1 KIR receptors were found in COVID-19 patients. In contrast, no differences in the distribution of CD56bright NK cell subsets were found in this study. These alterations in the distribution and phenotype of NK cells might enhance the impairment of this crucial innate line of defense during COVID-19 infection.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/metabolism , Lymphocyte Subsets/metabolism , Receptors, KIR/metabolism , Aged , CD56 Antigen/metabolism , COVID-19/blood , Female , GPI-Linked Proteins/metabolism , Hospitalization , Humans , Inflammation , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2
8.
Clin Immunol ; 234: 108911, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588089

ABSTRACT

BACKGROUND: Natural killer (NK) cells play an essential role against viruses. NK cells express killer cell immunoglobulin-like receptors (KIRs) which regulate their activity and function. The polymorphisms in KIR haplotypes confer differential viral susceptibility and disease severity caused by infections. We investigated the association between KIR genes and COVID-19 disease severity. METHODS: 424 COVID-19 positive patients were divided according to their disease severity into mild, moderate and severe. KIR genes were genotyped using next generation sequencing (NGS). Association between KIR genes and COVID-19 disease severity was conducted and significant correlations were reported. RESULTS: In the COVID-19 patients, KIR Bx genotype was more common than AA genotype. The Bx genotype was found more frequently in patients with mild disease, while in severe disease the AA genotype was more common than the Bx genotype. The KIR2DS4 gene carried the highest risk for severe COVID-19 infection (OR 8.48, pc= 0.0084) followed by KIR3DL1 (OR 7.61, pc= 0.0192). CONCLUSIONS: Our findings suggest that KIR2DS4 and KIR3DL1 genes carry risk for severe COVID-19 disease.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Receptors, KIR/genetics , Adult , COVID-19/metabolism , Female , Gene Frequency/genetics , Genotype , Humans , Killer Cells, Natural/metabolism , Male , Middle Aged , SARS-CoV-2/pathogenicity
9.
Immunogenetics ; 73(6): 449-458, 2021 12.
Article in English | MEDLINE | ID: covidwho-1427233

ABSTRACT

Associations between inherited Killer Immunoglobulin-like Receptor (KIR) genotypes and the severity of multiple RNA virus infections have been reported. This prospective study was initiated to investigate if such an association exists for COVID-19. In this cohort study performed at Ankara University, 132 COVID-19 patients (56 asymptomatic, 51 mild-intermediate, and 25 patients with severe disease) were genotyped for KIR and ligands. Ankara University Donor Registry (n:449) KIR data was used for comparison. Clinical parameters (age, gender, comorbidities, blood group antigens, inflammation biomarkers) and KIR genotypes across cohorts of asymptomatic, mild-intermediate, or severe disease were compared to construct a risk prediction model based on multivariate binary logistic regression analysis with backward elimination method. Age, blood group, number of comorbidities, CRP, D-dimer, and telomeric and centromeric KIR genotypes (tAA, tAB1, and cAB1) along with their cognate ligands were found to differ between cohorts. Two prediction models were constructed; both included age, number of comorbidities, and blood group. Inclusion of the KIR genotypes in the second prediction model exp (-3.52 + 1.56 age group - 2.74 blood group (type A vs others) + 1.26 number of comorbidities - 2.46 tAB1 with ligand + 3.17 tAA with ligand) increased the predictive performance with a 92.9% correct classification for asymptomatic and 76% for severe cases (AUC: 0.93; P < 0.0001, 95% CI 0.88, 0.99). This novel risk model, consisting of KIR genotypes with their cognate ligands, and clinical parameters but excluding earlier published inflammation-related biomarkers allow for the prediction of the severity of COVID-19 infection prior to the onset of infection. This study is listed in the National COVID-19 clinical research studies database.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Receptors, KIR/genetics , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , Female , Genetic Predisposition to Disease/epidemiology , HLA Antigens/genetics , Haplotypes , Humans , Ligands , Male , Middle Aged , Models, Statistical , Prospective Studies , ROC Curve , Risk Assessment , SARS-CoV-2 , Turkey/epidemiology
10.
Mol Neurobiol ; 58(12): 6111-6120, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1375838

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of coronavirus disease (COVID-19). Whereas in most cases COVID-19 is asymptomatic or pauci-symptomatic, extremely severe clinical forms are observed. In this case, complex immune dysregulations and an excessive inflammatory response are reported and are the main cause of morbidity and mortality. Natural killer cells are key players in the control of viral infection, and their activity is regulated by a tight balance between activating and inhibitory receptors; an alteration of NK activity was suggested to be associated with the development of severe forms of COVID-19. In this study, we analyzed peripheral NK cell subpopulations and the expression of activating and inhibitory receptors in 30 patients suffering from neurological conditions who recovered from mild, moderate, or severe SARS-CoV-2 infection, comparing the results to those of 10 SARS-CoV-2-uninfected patients. Results showed that an expansion of NK subset with lower cytolytic activity and an augmented expression of the 2DL1 inhibitory receptor, particularly when in association with the C2 ligand (KIR2DL1-C2), characterized the immunological scenario of severe COVID-19 infection. An increase of NK expressing the ILT2 inhibitory receptor was instead seen in patients recovering from mild or moderate infection compared to controls. Results herein suggest that the KIR2DL1-C2 NK inhibitory complex is a risk factor toward the development of severe form of COVID-19. Our results confirm that a complex alteration of NK activity is present in COVID-19 infection and offer a molecular explanation for this observation.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Receptors, KIR/metabolism , B-Lymphocytes/immunology , COVID-19/physiopathology , Histocompatibility Antigens/immunology , Humans , Ligands , Lymphocyte Subsets/immunology , T-Lymphocytes/immunology
11.
PLoS One ; 16(8): e0255608, 2021.
Article in English | MEDLINE | ID: covidwho-1344157

ABSTRACT

BACKGROUND: The diversity in the clinical course of COVID-19 has been related to differences in innate and adaptative immune response mechanisms. Natural killer (NK) lymphocytes are critical protagonists of human host defense against viral infections. It would seem that reduced circulating levels of these cells have an impact on COVID-19 progression and severity. Their activity is strongly regulated by killer-cell immuno-globulin-like receptors (KIRs) expressed on the NK cell surface. The present study's focus was to investigate the impact of KIRs and their HLA Class I ligands on SARS-CoV-2 infection. METHODS: KIR gene frequencies, KIR haplotypes, KIR ligands and combinations of KIRs and their HLA Class I ligands were investigated in 396 Sardinian patients with SARS-CoV-2 infection. Comparisons were made between 2 groups of patients divided according to disease severity: 240 patients were symptomatic or paucisymptomatic (Group A), 156 hospitalized patients had severe disease (Group S). The immunogenetic characteristics of patients were also compared to a population group of 400 individuals from the same geographical areas. RESULTS: Substantial differences were obtained for KIR genes, KIR haplotypes and KIR-HLA ligand combinations when comparing patients of Group S to those of Group A. Patients in Group S had a statistically significant higher frequency of the KIR A/A haplotype compared to patients in Group A [34.6% vs 23.8%, OR = 1.7 (95% CI 1.1-2.6); P = 0.02, Pc = 0.04]. Moreover, the KIR2DS2/HLA C1 combination was poorly represented in the group of patients with severe symptoms compared to those of the asymptomatic-paucisymptomatic group [33.3% vs 50.0%, OR = 0.5 (95% CI 0.3-0.8), P = 0.001, Pc = 0.002]. Multivariate analysis confirmed that, regardless of the sex and age of the patients, the latter genetic variable correlated with a less severe disease course [ORM = 0.4 (95% CI 0.3-0.7), PM = 0.0005, PMC = 0.005]. CONCLUSIONS: The KIR2DS2/HLA C1 functional unit resulted to have a strong protective effect against the adverse outcomes of COVID-19. Combined to other well known factors such as advanced age, male sex and concomitant autoimmune diseases, this marker could prove to be highly informative of the disease course and thus enable the timely intervention needed to reduce the mortality associated with the severe forms of SARS-CoV-2 infection. However, larger studies in other populations as well as experimental functional studies will be needed to confirm our findings and further pursue the effect of KIR receptors on NK cell immune-mediated response to SARS-Cov-2 infection.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Receptors, KIR/immunology , Adult , Aged , COVID-19/metabolism , Case-Control Studies , Female , Gene Frequency/genetics , Genes, MHC Class I/immunology , Genetic Predisposition to Disease , HLA-C Antigens/genetics , Haplotypes/genetics , Humans , Immunity/immunology , Immunogenetics/methods , Killer Cells, Natural/metabolism , Ligands , Male , Middle Aged , Receptors, KIR/genetics , Receptors, KIR/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index
12.
J Infect Dis ; 224(2): 229-240, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1310926

ABSTRACT

BACKGROUND: Etiopathogenesis of the clinical variability of the coronavirus disease 2019 (COVID-19) remains mostly unknown. In this study, we investigate the role of killer cell immunoglobulin-like receptor (KIR)/human leukocyte antigen class-I (HLA-I) interactions in the susceptibility and severity of COVID-19. METHODS: We performed KIR and HLA-I genotyping and natural killer cell (NKc) receptors immunophenotyping in 201 symptomatic patients and 210 noninfected controls. RESULTS: The NKcs with a distinctive immunophenotype, suggestive of recent activation (KIR2DS4low CD16low CD226low CD56high TIGIThigh NKG2Ahigh), expanded in patients with severe COVID-19. This was associated with a higher frequency of the functional A-telomeric activating KIR2DS4 in severe versus mild and/or moderate patients and controls (83.7%, 55.7% and 36.2%, P < 7.7 × 10-9). In patients with mild and/or moderate infection, HLA-B*15:01 was associated with higher frequencies of activating B-telomeric KIR3DS1 compared with patients with other HLA-B*15 subtypes and noninfected controls (90.9%, 42.9%, and 47.3%; P < .002; Pc = 0.022). This strongly suggests that HLA-B*15:01 specifically presenting severe acute respiratory syndrome coronavirus 2 peptides could form a neoligand interacting with KIR3DS1. Likewise, a putative neoligand for KIR2DS4 could arise from other HLA-I molecules presenting severe acute respiratory syndrome coronavirus 2 peptides expressed on infected an/or activated lung antigen-presenting cells. CONCLUSIONS: Our results support a crucial role of NKcs in the clinical variability of COVID-19 with specific KIR/ligand interactions associated with disease severity.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease/genetics , Receptors, KIR/genetics , Aged , COVID-19/immunology , COVID-19/pathology , Cross-Sectional Studies , Female , Genotype , HLA Antigens/genetics , HLA Antigens/metabolism , Humans , Immunophenotyping , Killer Cells, Natural/metabolism , Male , Middle Aged , Prospective Studies , Receptors, KIR/metabolism , SARS-CoV-2 , Severity of Illness Index
13.
Aging Cell ; 20(6): e13372, 2021 06.
Article in English | MEDLINE | ID: covidwho-1247110

ABSTRACT

Severe respiratory viral infectious diseases such as influenza and COVID-19 especially affect the older population. This is partly ascribed to diminished CD8+ T-cell responses a result of aging. The phenotypical diversity of the CD8+ T-cell population has made it difficult to identify the impact of aging on CD8+ T-cell subsets associated with diminished CD8+ T-cell responses. Here we identify a novel human CD8+ T-cell subset characterized by expression of Killer-cell Immunoglobulin-like Receptors (KIR+ ) and CD45RA (RA+ ). These KIR+ RA+ T cells accumulated with age in the blood of healthy individuals (20-82 years of age, n = 50), expressed high levels of aging-related markers of T-cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+ RA+ T cells were a major T-cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+ RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+ RA+ T cells are a unique human T-cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.


Subject(s)
Aging/physiology , CD8-Positive T-Lymphocytes/virology , T-Lymphocyte Subsets/virology , Aged , Aged, 80 and over , COVID-19/immunology , Female , Gene Expression Regulation , Humans , Influenza, Human/immunology , Male , Middle Aged , Receptors, KIR/blood , Receptors, KIR/metabolism , SARS-CoV-2
15.
Viruses ; 12(11)2020 11 20.
Article in English | MEDLINE | ID: covidwho-1121787

ABSTRACT

BACKGROUND: coronavirus disease 2019 (COVID-19) causes severe illness including cytokine storms, but mortality among countries differs largely. In the present study, we investigated the association between human leukocyte antigen (HLA) class I, which plays a major role in susceptibility to viral infections, and the mortality of COVID-19. METHODS: data of allele frequencies of HLA-A, -B and -C and COVID-19 mortality were obtained for 74 countries from the Allele Frequency Net Database and worldometer.info. Association between allele frequency of each HLA and mortality was assessed by linear regression followed by multivariable regression. Subsequently, association of HLA-C*05 to its receptor KIR2DS4fl, expressed on natural killer (NK) cells, and differential mortality to historic pandemics were analyzed. RESULTS: HLA-A*01, -B*07, -B*08, -B*44 and -C*05 were significantly associated with the risk of deaths (adjusted p = 0.040, 0.00081, 0.047, 0.0022, 0.00032, respectively), but only HLA-C*05 remained statistically significant (p = 0.000027) after multivariable regression. A 1% increase in the allele frequency of HLA-C*05 was associated with an increase of 44 deaths/million. Countries with different mortality could be categorized by the distribution of HLA-C*05 and its receptor KIR2DS4fl, which in combination cause NK cell-induced hyperactive immune response. Countries with similar ethnic and/or geographic background responded in a similar pattern to each pandemic. CONCLUSIONS: we demonstrated that allele frequency of HLA-C*05 and the distribution pattern with its receptor KIR2DS4fl strongly correlated with COVID-19 mortality. Host genetic variance of innate immunity may contribute to the difference in mortality among various countries and further investigation using patient samples is warranted.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Gene Frequency , Genetic Association Studies , HLA-C Antigens/genetics , Databases, Nucleic Acid , Global Health , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Multivariate Analysis , Pandemics , Receptors, KIR/genetics , Risk Factors , SARS-CoV-2
16.
Hum Immunol ; 82(4): 247-254, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1039364

ABSTRACT

Immunorelevant genes are among the most probable modulators of coronavirus disease 2019 (COVID-19) progression and prognosis. However, in the few months of the pandemic, data generated on host genetics has been scarce. The present study retrieved data sets of HLA-B alleles, KIR genes and functional single nucleotide polymorphisms (SNPs) in cytokines related to COVID-19 cytokine storm from two publicly available databases: Allele Frequency Net Database and Ensembl, and correlated these frequency data with Case Fatality Rate (CFR) and Daily Death Rates (DDR) across countries. Correlations of eight HLA-B alleles and polymorphisms in three cytokine genes (IL6, IL10, and IL12B) were observed and were mainly associated with DDR. Additionally, HLA-B correlations suggest that differences in allele affinities to SARS-CoV-2 peptides are also associated with DDR. These results may provide rationale for future host genetic marker surveys on COVID-19.


Subject(s)
COVID-19/pathology , Cytokines/genetics , HLA-B Antigens/genetics , Receptors, KIR/genetics , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Gene Frequency/genetics , Genetic Markers/genetics , Humans , Interleukin-10/genetics , Interleukin-12 Subunit p40/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics
17.
Anal Cell Pathol (Amst) ; 2020: 6692739, 2020.
Article in English | MEDLINE | ID: covidwho-1033554

ABSTRACT

The impact of the SARS-CoV-2 pandemic has significantly affected global health and created a world crisis. The exponentially increasing numbers of infection and mortality have made preventive measures challenging. India being a highly populated nation has so far effectively counteracted the pandemic outbreak with a significantly lower rate of mortality despite the high infection rates. The genetic architecture of the immune response genes in the Indian population, BCG vaccination, the predominantly young age group of people, and their traditional food habits might contribute to the lower rate of mortality. Human leukocyte antigens (HLA) play a vital role in triggering T cells, and natural killer (NK) cells can immediately react to eliminate infected cells. Activation of virus-specific CD4+ T cells and CD8+ cytotoxic T cells selectively targets the infected cells and strengthens the immunoregulatory system. The checkpoint for NK cell function is the engagement of killer Ig-like receptors (KIR) molecules with their respective HLA ligands overexpressed or expressed on the compromised virus-infected cells which have shown polymorphism among different ethnic groups. Here, we explore if certain KIR-HLA motifs grant Indians a survival advantage in terms of the low rate of mortality. Additionally, enhanced immunity through BCG vaccination may favor fruitful eradication of SARS-CoV-2 and provide the way out as in therapeutic intervention and vaccination strategies.


Subject(s)
COVID-19/immunology , Pandemics , SARS-CoV-2 , BCG Vaccine/pharmacology , COVID-19/epidemiology , COVID-19/mortality , Cross Reactions , Cytokine Release Syndrome/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Humans , India/epidemiology , Killer Cells, Natural/immunology , Models, Immunological , Pandemics/prevention & control , Receptors, KIR/genetics , Receptors, KIR/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology
18.
Pathog Dis ; 79(1)2021 01 09.
Article in English | MEDLINE | ID: covidwho-963763

ABSTRACT

A vast proportion of coronavirus disease 2019 (COVID-19) individuals remain asymptomatic and can shed severe acute respiratory syndrome (SARS-CoV) type 2 virus to transmit the infection, which also explains the exponential increase in the number of COVID-19 cases globally. Furthermore, the rate of recovery from clinical COVID-19 in certain pockets of the globe is surprisingly high. Based on published reports and available literature, here, we speculated a few immunovirological mechanisms as to why a vast majority of individuals remain asymptomatic similar to exotic animal (bats and pangolins) reservoirs that remain refractile to disease development despite carrying a huge load of diverse insidious viral species, and whether such evolutionary advantage would unveil therapeutic strategies against COVID-19 infection in humans. Understanding the unique mechanisms that exotic animal species employ to achieve viral control, as well as inflammatory regulation, appears to hold key clues to the development of therapeutic versatility against COVID-19.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Receptors, KIR/immunology , Receptors, NK Cell Lectin-Like/immunology , Zoonoses/immunology , Animals , Animals, Exotic/virology , Asymptomatic Diseases , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Disease Reservoirs , Eutheria/virology , Gene Expression , Host Specificity , Humans , Immune Tolerance , Immunity, Innate , Interferon-beta/deficiency , Interferon-beta/genetics , Interferon-beta/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Monocytes/immunology , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, KIR/deficiency , Receptors, KIR/genetics , Receptors, NK Cell Lectin-Like/deficiency , Receptors, NK Cell Lectin-Like/genetics , SARS-CoV-2/pathogenicity , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Zoonoses/genetics , Zoonoses/transmission , Zoonoses/virology
19.
Sci Immunol ; 5(50)2020 08 21.
Article in English | MEDLINE | ID: covidwho-725061

ABSTRACT

Understanding innate immune responses in COVID-19 is important to decipher mechanisms of host responses and interpret disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections but might also contribute to immunopathology. Using 28-color flow cytometry, we here reveal strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients. This pattern was mirrored in scRNA-seq signatures of NK cells in bronchoalveolar lavage from COVID-19 patients. Unsupervised high-dimensional analysis of peripheral blood NK cells furthermore identified distinct NK cell immunotypes that were linked to disease severity. Hallmarks of these immunotypes were high expression of perforin, NKG2C, and Ksp37, reflecting increased presence of adaptive NK cells in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed across COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This study provides a detailed map of the NK cell activation landscape in COVID-19 disease.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Killer Cells, Natural/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Severity of Illness Index , Adaptive Immunity , CD56 Antigen/metabolism , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Flow Cytometry/methods , Humans , Lymphocyte Activation , Male , Middle Aged , Pandemics , Phenotype , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Polymerase Chain Reaction , Prospective Studies , Protein Interaction Maps/immunology , Receptors, KIR/metabolism , SARS-CoV-2 , Serologic Tests , Sweden/epidemiology
20.
Clin Immunol ; 215: 108410, 2020 06.
Article in English | MEDLINE | ID: covidwho-38673

ABSTRACT

Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specifically, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.


Subject(s)
Coronavirus Infections/genetics , Epigenesis, Genetic , Genetic Predisposition to Disease , Lupus Erythematosus, Systemic/genetics , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Viremia/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , CD11a Antigen/genetics , CD11a Antigen/immunology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cytokines/genetics , Cytokines/immunology , DNA Methylation , Disease Progression , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Oxidative Stress/genetics , Oxidative Stress/immunology , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Protein Binding , Receptors, KIR/genetics , Receptors, KIR/immunology , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viremia/complications , Viremia/epidemiology , Viremia/immunology
SELECTION OF CITATIONS
SEARCH DETAIL